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Abstract. We extend and apply a previously developed method for a semiclassical treatment of a system
with large spin S. A multisite Heisenberg Hamiltonian is transformed into an effective classical Hamilton
function which can be treated by standard methods for classical systems. Quantum effects enter in form
of multispin interactions in the Hamilton function. The latter is written in the form of an expansion in
powers of J/(TS), where J is the coupling constant. Main ingredients of our method are spin coherent
states and cumulants. Rules and diagrams are derived for computing cumulants of groups of operators
entering the Hamiltonian. The theory is illustrated by calculating the quantum corrections to the free
energy of a Heisenberg chain which were previously computed by a Wigner-Kirkwood expansion.

PACS. 05.30.-d Quantum statistical mechanics – 75.10.Hk Classical spin models – 75.10.Jm Quantized
spin models

1 Introduction

Quantum effects in systems with localized spins depend
on the size of the spin S. They are strongest for S = 1/2
while systems behave classically in the limit S → ∞.
There are, however, numerous compounds having inter-
mediate or high spin values, which we would like to treat
semiclassically, i.e., classically with quantum corrections
expanded in powers of 1/S. Different proposals have been
made in the past how this can be achieved [1,2]. We have
recently suggested a method by which we can derive effec-
tive classical Hamilton functions for spin Hamiltonians by
using spin coherent states and cumulants [3]. The quan-
tum partition function is thereby replaced by a classical
one, and the trace over a complete set of quantum states
is replaced by an integration over the classical spin vec-
tors. The mathematical structure of these two objects is
quite different, and the transition from one to the other
was investigated by Lieb [4] who obtained upper and lower
bounds for the quantum partition function for large S. He
did not consider the 1/S corrections to the classical par-
tition function which are discussed here.

The previous paper [3] dealt with one- and two-spin
systems and their semiclassical description when S is
large. Here we extend these calculations to a many-spin
system. The necessary formalism is described in Section 2.
The method is applied in Section 3 to the Heisenberg
Hamiltonian in an applied magnetic field first stating the
rules for evaluating the required cumulants. As we will
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show this can be done by means of a diagrammatic tech-
nique. The explicit form of the corresponding classical
Hamilton function is derived in Section 4. All terms of
order J [J/(TS)]2/Sn with n = 0, 1, 2 are included in the
effective Hamilton function. Obviously, the semiclassical
description of large-spin systems breaks down in the low-
temperature limit, where quantization of energy levels be-
comes important. To check the method, we use in Sec-
tion 6 our effective Hamilton function in order to calculate
the free energy and other thermodynamic properties of a
spin chain to order 1/S2. These results were previously
computed by a Wigner-Kirkwood expansion without us-
ing effective classical Hamiltonians. Section 7 contains a
discussion and the conclusions.

2 Spin coherent states and cumulants

To achieve our goal, we use two theoretical tools. The
first one is the coherent-state representation of quantum-
statistical averages. On each lattice site i, we introduce
spin coherent states |ni〉, i.e., states with the maximal
projection on the axis pointing in the direction of the unit
vector ni. The direct product of these states |{ni}〉 ap-
proaches the “classical” state of the spin system in the
limit S → ∞. On the other hand, the basis of coherent
states is complete (and even overcomplete), so that it con-
tains all quantum states. The quantum-statistical averages
of the system can be rewritten in the coherent-state basis
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with the help of the unity operator

1 =
2S + 1

4π

∫
dn |n〉〈n|. (1)

For a single-spin system, the trace of an operator Â over
any complete orthonormal basis |m〉 becomes [4]

tr Â =
∑
m

〈m|Â|m〉 =
2S + 1

4π

∫
dn
∑
m

〈m|Â|n〉〈n|m〉

=
2S + 1

4π

∫
dn 〈n|Â|n〉. (2)

Therefore the partition function for a many-spin quantum
Hamiltonian Ĥ can be written as

Z =
(

2S + 1
4π

)N ∫ N∏
i=1

dni 〈{ni}| exp(−βĤ)|{ni}〉, (3)

where β ≡ 1/T . It has the same form as the one for clas-
sical systems, provided one defines the effective classical
Hamilton function H by the relation

βH = − ln〈{ni}| exp(−βĤ)|{ni}〉
= 〈{ni}|1− exp(−βĤ)|{ni}〉c. (4)

Here the superscript c denotes the cumulant of a matrix
element (see below). Cumulants constitute the second the-
oretical tool used in this paper.

The above formula is exact for any quantum spin sys-
tem. In the limit S → ∞, H reduces to the usual clas-
sical Hamiltonian. A mathematically rigorous treatment
of this limiting transition can be found in Lieb’s paper,
reference [4] Here we will obtain quantum correc-
tions to the classical Hamiltonian using a system-
atic 1/S expansion for S � 1. In the same
context, a technique using partial differential equa-
tions for the density matrix was applied in refer-
ence [1]. But an explicit derivative-free expression for
the effective classical Hamiltonian was obtained in
reference [1] only for the spin-chain model under the con-
dition that neigbouring spins are nearly collinear. The
method presented here does not use derivatives and yields
explicit results for any lattice.

The effective Hamilton function is obtained in form of
a cumulant expansion by expanding in equation (4) the
operator exp(−βĤ). It is worth noting a basic relation
between semiclassical theory and cumulants. A character-
istic property of quantum mechanics is that the expec-
tation value of a product A1A2 of two observables with
respect to a quantum state |ψ〉 is generally distinct from
the product of the expectation values of A1 and A2. The
difference is just the cumulant, i.e.,

〈A1A2〉c = 〈A1A2〉 − 〈A1〉〈A2〉 6= 0. (5)

In the classical limit this difference vanishes. Therefore we
expect that a theory formulated in terms of cumulants is
particularly suitable for a semiclassical expansion.

Let us recall the definition and basic properties of cu-
mulants. Averages or matrix elements 〈. . . 〉 can be ex-
pressed through cumulants 〈. . . 〉c as follows

〈A〉 = 〈A〉c, 〈A1A2〉 = 〈A1A2〉c + 〈A1〉〈A2〉,
〈A1A2A3〉 = 〈A1A2A3〉c + 〈A1〉〈A2A3〉c + 〈A2〉〈A1A3〉c

+ 〈A3〉〈A1A2〉c + 〈A1〉〈A2〉〈A3〉, (6)

etc., where Ai are classical stochastic variables or
quantum-mechanical operators. The averaging above is
performed over a classical distribution function or weighed
over quantum states. A more detailed discussion of cumu-
lants can be found in references [5–7]. Cumulants can be
obtained by differentiation of a generating function, i.e.,
from

〈Ak1
1 . . . Aknn 〉c =

∂k1

∂λk1
1

· · · ∂
kn

∂λknn
ln〈eλ1A1 . . . eλnAn〉 (7)

at λ1 = . . . = λn = 0, in contrast to averages 〈. . . 〉, which
are given by a similar expression without the logarithm.
By multiplying by

∏n
l=1 λ

kl/kl! and summing over all kl =
0, . . . ,∞ without the term k1 = . . . = kn = 0 one obtains
the identity

〈eλ1A1 . . . eλnAn − 1〉c = ln〈eλ1A1 . . . eλnAn〉. (8)

The second line of equation (4) is a particular case of this
formula.

Let us consider cumulants of spin operators with re-
spect to spin coherent states. These cumulants have an es-
pecially simple form when the spin-operator components
Sz (axis z along n) and S± = Sx ± iSy are used. A cu-
mulant vanishes if it is of the form 〈. . . S+〉c, 〈. . . S+S−〉c,
〈. . . Sz〉c, etc., where . . . stands for any combination of
spin operators. That is, the number of S+ and S− in the
cumulant must be balanced in order to give a nonzero re-
sult. If, however, this balance is achieved already within
a subgroup of operators on the right or left side of the
operator list, the cumulant vanishes, too. Non-vanishing
cumulants are

〈Sz〉 = S, 〈S+S
n
z S−〉c = 2S(−1)n,

〈S+S
n
z S+S

m
z S−S

n′

z S−〉c = −4S(−1)n+n′(−2)m,
〈S+S+S+S−S−S−〉c = 3〈S+S+S−S+S−S−〉c = 24S,

(9)

etc. The above results can be obtained recurrently, using
equation (6) and the commutation relations [Sz, S−] =
−S− and [S+, S−] = 2Sz, which remain valid inside cumu-
lants. For scaled spins S/S, each nonvanishing cumulant
containing n spin operators scales like 1/Sn−1.

An expansion of H in equation (4) in powers of 1/S is
obtained from the Taylor series

βH = 〈1− exp(−βĤ)〉c

= β〈Ĥ〉c − β2

2!
〈ĤĤ〉c +

β3

3!
〈ĤĤĤ〉c + . . . , (10)
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where we have introduced the shorthand notation 〈. . . 〉 ≡
〈{ni}| . . . |{ni}〉. Here the first term on the right-hand side
(rhs) is the classical energy of the spin. As seen from equa-
tion (9), increasing powers of 1/S appear in each order of
the expansion. In fact, equation (10) is an expansion in
powers of J/(TS) and it breaks down at low temperatures.
For S � 1, the range of convergence is much larger than
that of the high-temperature series expansion. For the cal-
culation of thermodynamic quantities one can further ex-
pand exp(−βH) in powers of 1/S. In that case the sta-
tistical weights of different spin orientations are described
by a purely classical Hamiltonian, whereas quantum ef-
fects manifest themselves in corrections to the density of
states.

3 The cumulant expansion

Let us consider a spin Hamiltonian of the Heisenberg form

Ĥ = −
∑
i

Hi · Si −
1
2

∑
ij

JijSi · Sj . (11)

To implement the cumulant expansion of equation (10), it
is convenient to express the spin operator on each site i in
the coordinate system with the z axis along the coherent-
state vector ni ≡ niz

Si =
∑

αi=z,±
niαiSiαi n± ≡ (nx ∓ iny)/2, (12)

where nx and ny are appropriate transverse basis vectors.
Insertion into equation (10) leads to expressions of the
type

− β2

2! 22

∑
ii′jj′

Jii′Jjj′
∑

αiαi′αjαj′

(niαi · ni′αi′ )(njαj · nj′αj′ )

× 〈(SiαiSi′αi′ )(SjαjSj′αj′ )〉
c, (13)

as illustrated by the second-order pure-exchange term.
The brackets inside the cumulant imply that this cumu-
lant is defined with respect to the two pairs of the spin-
operator components and not with respect to four single
operators. To calculate such cumulants of composite oper-
ators, it is convenient to (i) express them through ordinary
matrix elements (see, e.g., Eq. (5)) and (ii) express matrix
elements through cumulants of single spin-operator com-
ponents (see Eqs. (6)). The latter are nonzero only if all
the operators in the cumulant belong to the same site, in
which case they are readily given by equations (9). One
can see that in several lowest orders of the cumulant ex-
pansion, the summation over the spin-component indices
α in equation (13) reduces to a single realization which
gives a nonzero result. The result of such a procedure ap-
plied to equation (13) is the following:

1
22
〈(AiAi′)(AjAj′)〉c = 〈Ai〉〈Ai′Aj〉c〈Aj′〉

+
1
2
〈AiAj〉c〈Ai′Aj′〉c, (14)

Fig. 1. Diagrammatical representation of the cumulant expan-
sion for the quantum Heisenberg magnet. Wavy lines stand for
the exchange interaction Jij , small solid circles are cumulants
of spin operators.

where Ai ≡ Siαi . Hereby we have taken into account
that operators Ai and Ai′ belong to different sites so
that terms of the type 〈AiAi′〉c vanish. On the rhs of
this expression, one could add terms differing by permu-
tations of the indices i, i′ and/or j, j′. These terms make
the same contributions to equation (13) as those present in
equation (14); Instead of writing them explicitly, they lead
to the prefactor 1/22 in equation (14). Generally, the pos-
sibility of permutating spin operators connected by the
exchange interaction effectively cancels the coefficient 1/2
in equation (11). The factor 1/2 in front of the last term
of equation (14) appears because of the permutation of
both i, i′ and j, j′ which does not generate a new term
of this type. For the cumulant with three groups of spin
operators one obtains

1
23
〈(AiAi′)(AjAj′)(AlAl′)〉c =

〈Ai〉〈Ai′Aj〉c〈Aj′Al〉c〈Al′〉
+〈Ai〉〈Ai′Al〉c〈AjAl′〉c〈Aj′〉
+〈Aj〉〈AiAj′〉c〈Ai′Al〉c〈Al′〉
+〈AiAjAl〉c〈Ai′〉〈Aj′〉〈Al′〉
+〈AiAj〉c〈Ai′Aj′Al〉c〈Al′〉
+〈AiAl〉c〈Ai′AjAl′〉c〈Aj′〉
+〈AjAl〉c〈AiAj′Al′〉c〈Ai′〉
+〈Ai′Aj〉c〈Aj′Al〉c〈AiAl′〉c

+
1
2
〈AiAjAl〉c〈Ai′Aj′Al′〉c. (15)

The rhs of equations (14, 15) are constructed accord-
ing to a principle which can be formulated in a dia-
grammatic language: The operators A are either con-
tracted into cumulants or connected by the interaction
lines. Similarly to other diagram techniques, there are no
terms consisting of disconnected parts, e.g., there is no
term 〈Ai〉〈Ai′〉〈Aj〉〈Aj′ 〉 in equation (14). Note that the
order of the operators in the cumulants on the rhs of
equations (14, 15) is the same as on the left-hand side
(lhs). This fact enables us to write down immediately,
equations of the form of equations (14) or (15), without
explicitly performing steps (i) and (ii). The diagrammatic
representation of the cumulant expansion of equation (10)
for the quantum Heisenberg magnet in the zero-field case
is shown in Figure 1. Diagram 0 is the first order of the
cumulant expansion in Ĥ. It will be shown below that
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Fig. 2. The same as in Figure 1 for the mixed field-exchange
terms. Straight lines represent an external magnetic field.

this diagram yields the zeroth order in 1/S for the Hamil-
ton function H, i.e., the classical Hamilton function H(0).
Diagrams 1a and 1b correspond to the two terms in equa-
tion (14). Diagram 2a represents the first three terms in
equation (15). These terms have the same topology and
differ only by the order of the spin operators. This re-
flects its quantum nature. Diagram 2b corresponds to the
fourth term in equation (15). Diagram 2c represent the
fifth, sixth, and seventh terms in equation (15). Diagrams
2d and 2e represent the last two terms, respectively.

Cumulants corresponding to the mixed field-exchange
terms in the cumulant expansion can be treated in a sim-
ilar manner. One obtains

1
2
〈(AiAi′)Aj〉c = 〈Ai〉〈Ai′Aj〉c

1
2
〈Aj(AiAi′)〉c = 〈Ai〉〈AjAi′〉c

1
2
〈(AiAi′)AjAl〉c = 〈Ai〉〈Ai′AjAl〉c

+ 〈AiAl〉c〈Ai′Aj〉c
1
22
〈(AiAi′)(AjAj′)Al〉c = 〈AiAl〉c〈Ai′Aj〉c〈Aj′〉

+ 〈Ai〉〈Ai′AjAl〉c〈Aj′〉
+ 〈Ai〉〈Ai′Aj〉c〈Aj′Al〉c

+ 〈AiAjAl〉c〈Ai′Aj′〉c, (16)

etc. The diagrams corresponding to the rhs of these ex-
pressions are shown in Figure 2. For the last equation
of (16), in particular, the diagram corresponding to the
nth term (n = 1, 2, 3, 4) on the rhs is labeled by JJH-n.

4 The effective Hamiltonian

Let us now proceed to the calculation of the different terms
in the cumulant expansion of equation (10). The term of
the first order in Ĥ yields the classical Hamiltonian

H(0) = −
∑
i

hi · ni −
1
2

∑
ij

J̃ijni · nj , (17)

which is the zeroth order of the 1/S expansion. Here

hi ≡ SHi, J̃ij ≡ S2Jij (18)

are the reduced magnetic field and the exchange inter-
action, respectively. In second and higher orders in Ĥ of

the cumulant expansion, 1/S corrections appear. With the
help of equations (14, 16, 9) one obtains

H(1) = −β
S

∑
i

(hi · ni+)(ni− · hi)

− β

S

∑
ij

J̃ij [(hi·ni+)(ni−·nj) + (hi·ni−)(ni+·nj)]

− β

S

∑
ijl

J̃ij J̃jl(ni · nj+)(nj− · nl)

− β

S2

∑
ij

J̃2
ij(ni+ · nj+)(ni− · nj−). (19)

In this expression, as well as in all other expressions of
this type, the transverse components of the coherent-state
vectors, n±, can be expressed in terms of n after applying
some vector algebra (for details see Appendix). This is not
surprising since n is the only vector specifying the spin
coherent state. Thus one can rewrite H(1) in the form

H(1) = − β

4S

∑
i

[hi × ni]2

− β

4S

∑
ij

J̃ij [(hi · nj)− (hi · ni)(ni · nj)

+ (hj · ni)− (hj · nj)(nj · ni)]

− β

4S

∑
ijl

J̃ij J̃jl[(ni · nl)− (ni · nj)(nj · nl)]

− β

16S2

∑
ij

J̃2
ij [1− (ni · nj)]2. (20)

One can see that the effective classical Hamilton function
corresponding to the Heisenberg quantum Hamiltonian,
equation (11), is of a non-Heisenberg form. In particular,
many-spin interactions appear.

Let us now proceed to the third order terms of the cu-
mulant expansion. At first we consider the zero-field case.
Equation (15) generates terms of different topology in H(2)

(see Fig. 1)

H(2) = − β2

8S2

∑
ijln

J̃ij J̃jlJ̃lnΦ2a(ni,nj ,nl,nn)

− β2

12S2

∑
ijln

J̃inJ̃jnJ̃lnΦ2b(ni,nj,nl,nn)

− β2

24S3

∑
ijl

J̃2
ij J̃jlΦ2c(ni,nj ,nl)

− β2

48S3

∑
ijl

J̃ij J̃jlJ̃liΦ2d(ni,nj ,nl)

− β2

48S4

∑
ij

J̃3
ijΦ2e(ni,nj). (21)

Here the 2a term is due to the first, second, and third
terms of equation (15), the 2b term is due to the fourth



D.A. Garanin et al.: Quasiclassical Hamiltonians for large-spin systems 297

term of equation (15), the 2c term is due to the fifth, sixth,
and seventh terms of equation (15), the 2d term is due to
the eighth term, and the 2e term is due to the ninth term.
For the functions Φ in equation (21) we find

Φ2a =
16
3

[
(ni · nj+)(nj− · nl+)(nl− · nn)

+ (ni · nj+)(nj− · nl−)(nl+ · nn)

+ (ni · nj−)(nj+ · nl+)(nl− · nn)
]

= (ni · nn)− (ni · nl)(nl · nn)

− (ni · nj)(nj · nn) + (ni · nj)(nj · nl)(nl · nn)

+
1
3
[
(ni · nl)(nj · nn)− (ni · nn)(nj · nl)

]
(22)

Φ2b = 4(ni · nn+)(nj · nn)(nl · nn−)

= (ni · nn)(nj · nn)(nl · nn)− 1
3

[
(ni · nn)(nj · nl)

+ (nj · nn)(ni · nl) + (nl · nn)(ni · nj)
]
, (23)

Φ2c = −16
[
(ni+ · nj+)(ni− · nj)(nj− · nl)

+ (ni− · nj−)(ni+ · nj)(nj+ · nl)
+ (ni+ · nj+)(ni− · nj−)(nj · nl)

]
=[1− (ni · nj)]

{
[3(ni · nj)− 1](ni · nl)− 2(nj · nl)

}
,

(24)

Φ2d = 43(ni+ · nj+)(nj− · nl+)(nl− · ni−)

= (ni · nj)2 + (nj · nl)2 + (nl · ni)2

− (ni · nj)(nj · nl)(nl · ni)

− 1
3

[
(ni · nj) + (nj · nl) + (nl · ni) + (ni · nj)(nj · nl)

+ (nj · nl)(nl · ni) + (nl · ni)(ni · nj)
]
, (25)

and

Φ2e = 16(ni+ · nj+)(ni · nj)(ni− · nj−)

= (ni · nj)[1− (ni · nj)]2. (26)

The coefficient Φ2d can be rewritten in the form

Φ2d = −[ninjnl]2

+ [1− (ni · nj)][1− (nj · nl)(nl · ni)], (27)

where [abc] ≡ a · (b × c) is the mixed product and an
appropriate symmetrization is implied.

The field-dependent terms of order H3, JH2 and, J2H
in H(2) can be calculated with the help of equation (16).

The result has the form

H(2)
h =

β2

12S2

∑
i

(ni · hi)[ni × hi]2

− β2

8S2

∑
ij

J̃ijΦ2h2(ni,nj ,hi,hj)

− β2

8S2

∑
ijl

J̃ij J̃jlΦ2h,a(ni,nj ,nl,hi,hj,hl)

− β2

48S3

∑
ij

J̃2
ijΦ2h,b(ni,nj ,hi,hj), (28)

where

Φ2h2 = (ni · nj)
[
(hi · ni)2 + (hj · nj)2

]
− 2

3
[
(hi · ni)(hi · nj) + (hj · nj)(hj · ni)

]
− 1

3
(ni · nj)[h2

i + h2
j ]

+ (hi · hj)−(hi · ni)(ni · hj)−(hi · nj)(nj · hj)
+ (hi · ni)(ni · nj)(nj · hj)

+
1
3
[
(hi · nj)(hj · ni)− (hi · hj)(ni · nj)

]
, (29)

Φ2h,a = (hi · nl)− (hi · nj)(nj · nl)
+ (hl · ni)− (hl · nj)(nj · ni)
− [(hi · ni)+(hl · nl)][(ni · nl)−(ni · nj)(nj · nl)]

+
1
3

[
(ni · nl)

[
(hi · nj) + (hl · nj)

]
− (hi · nl)(ni · nj)− (hl · ni)(nl · nj)

]
+ 2(ni · nj)(hj · nj)(nj · nl)−

2
3

[
(ni · nl)(hj · nj)

+ (nj · nl)(hj · ni) + (nj · ni)(hj · nl)
]
, (30)

and

Φ2h,b = −[1− (ni · nj)]
{

2[(hi · nj) + (hj · ni)]
+ [1− 3(ni · nj)][(hi · ni) + (hj · nj)]

}
. (31)

For a homogeneous field, hi = h, the last expression be-
comes

Φ2h,b = −3[h · (ni + nj)][1− (ni · nj)]2. (32)

As was said after equation (10), cumulant expansion is,
in general, an expansion in β/S. In particular, in zero
field in the nth order of the cumulant expansion, terms
of order J̃(βJ̃/S)n−1 appear. On the other hand, there
are also terms carrying additional powers of 1/S, such as
the last term of equation (20) and the last three terms
of equation (21). This feature results, formally, from re-
expression of cumulants of composite operators by ordi-
nary cumulants, equations (14, 15), which are specific to
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many-spin systems. For S � 1, the terms containing pow-
ers of βJ̃/S without additional factors 1/S dominate over
the other terms in the whole range of temperatures. Those
terms are given by “tree” diagrams, such as 0, 1a, 2a, and
2b in Figure 1. These diagrams are maximally branched
and they do not contain loops or parallel interaction lines.
Non-tree diagrams can be obtained from the tree diagrams
by joining two solid circles into one. This leads each time
to appearance of a spin cumulant of a higher order and
thus to an additional factor of 1/S (see Eq. (9)). Minimally
branched diagrams are those consisting of several parallel
wavy lines, such as diagrams 1b and 2e in Figure 1. These
diagrams result in terms of order J̃(βJ̃/S2)n−1 in H.

5 Physical quantities

Quantum-statistical averages of operators describing var-
ious physical quantities can be obtained by differentia-
tion of the partition function Z or its logarithm with re-
spect to appropriate parameters. For the internal energy
U = 〈〈Ĥ〉〉 one obtains

U = −∂ lnZ/∂β = 〈H∗〉, (33)

where 〈. . . 〉 denotes a classical thermal average and

H∗ = ∂(βH)/∂β = H(0) + 2H(1) + 3H(2) + . . . (34)

differs from H = H(0) +H(1) +H(2) + . . . The scaled mag-
netization per site, m ≡ 〈〈S〉〉/(SN) ≡

∑
i〈〈Si〉〉/(SN),

is given by

m =
1
N

∂ lnZ
∂(βh)

=
1
N
〈n∗〉, n∗ = −∂H

∂h
, (35)

where h is the homogeneous part of the magnetic field
defined formally by hi ⇒ hi + h. Here, n∗ is not just
n =

∑
i ni but contains quantum corrections from all

orders of the cumulant expansion. In particular, to sec-
ond order of the cumulant expansion, one obtains from
equations (17, 20)

n∗ =
∑
i

ni +
β

2S

∑
i

[hi − ni(ni · hi)]

+
β

4S

∑
ij

J̃ij [1− (ni · nj)](ni + nj). (36)

The reduced correlation function of different spin compo-
nents on different lattice sites can be written as

1
S2
〈〈SiαSjβ〉〉 =

1
Z

∂2Z
∂(βhiα)∂(βhjβ)

=
〈
∂H
∂hiα

∂H
∂hjβ

− ∂2H
∂hiα∂hjβ

〉
. (37)

One notices that in order to calculate a correlation func-
tion, it is insufficient to perform a classical thermal av-
erage of niαnjβ or even of n∗iαn

∗
jβ . The last term of

equation (37) makes a contribution to the third order in
the cumulant expansion due to the terms of type JH2 (see
Eq. (28)).

6 Application to the spin chain

The isotropic spin chain in zero magnetic field is a sim-
ple solvable model in the classical limit [9]. The effective
quasiclassical Hamiltonian discussed in this paper can be
used to analytically calculate 1/S corrections to the clas-
sical results. The 1/S expansion of the partition function
has the form

Z ∼= Z̃0

[
1− 〈β(H(1) +H(2))〉+

1
2!
〈[βH(1)]2〉+ . . .

]
,

(38)

where the averages are performed with respect to the clas-
sical Hamiltonian H(0),

Z̃0 =
(

2S + 1
4π

)N
Z0, (39)

and Z0 is the partition function of the classical system.
For the open spin chain, the latter is given by Z0 =
4π(4π sinh(ξ)/ξ)N−1 with ξ ≡ βJ̃ . To order 1/S2, one
should use for the linear H(1) term in equation (38) the
third and fourth terms of equation (20), for the quadratic
H(1) term the third term of equation (20), and for the lin-
ear H(2) term the first and second terms of equation (21).
After performing thermodynamic averages one obtains

lnZ
N
∼= ln(2S + 1) + ln

(
sinh ξ
ξ

)
+
ξB

S

+
5ξ2 − 7ξ2B2 ∓ ξ2B − 9ξB

12S2
+O

(
1
S3

)
, (40)

for ferro- and antiferromagnets, where B ≡ coth ξ − 1/ξ
is the Langevin function. This formula was obtained ear-
lier [2] with the help of the Wigner-Kirkwood expan-
sion which avoids using effective classical Hamiltonians.
It strongly resembles the result for the two-spin model,
equation (20) of reference [3], where the factor 7 is re-
placed by 6. For the energy per spin U = −∂ lnZ/∂(βN)
one obtains

U

J̃
∼= −B − 1

S
[B + ξB′]− 1

S2
[10ξ

− (14ξB + 9)(B + ξB′)∓ (2B + ξB′)]. (41)

Let us consider now the energy U per spin which follows
from linear spin-wave theory

U = − J̃0

2
− J̃0

2S

∫
dq

(2π)3
(1− ε̃q) + T

∫
dq

(2π)3

β̃ε̃q

exp(β̃ε̃q)− 1

β̃ ≡ βJ̃0/S, ε̃q ≡ (S/J̃0)εq =

{
1− λq, F√

1− λ2
q, AF . (42)

Here J̃0 is the zeroth Fourier component of J̃ij and
λq ≡ J̃q/J̃0. The first term in the expression for U is
the classical ground-state energy, the second term is the
quantum correction to the former, and the last term is
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Fig. 3. Heat capacity of the antiferromagnetic Heisenberg
S = 3/2 chain. Theoretical results to zeroth, first and second
order of the cumulant expansion, as well as of linear spin-wave
theory (SWT). They are compared with the numerical TMRG
calculation of reference [10].

the temperature-dependent magnon contribution. Strictly
speaking, linear spin-wave theory is only applicable to
more than two dimensions, although, equation (42) re-
mains well-defined in lower dimensions. The Haldane gap
in the magnon spectrum for integer S, which is not taken
into account in equation (42), behaves as exp(−S) and
becomes negligible for large spins. Whereas ε̃q is of order
unity, the parameter β̃ is precisely the small parameter of
the cumulant expansion. If one expands U in powers of β̃,
one obtains a series which is very close to that following
from the cumulant expansion in the limit ξ ≡ J̃/T � 1. In
particular, for a ferromagnetic chain in the temperature
interval J̃/S � T � J̃ equation (41) yields

U

J̃
∼= −1− 1

S
+

1
ξ

+
ξ

2S2
− 1

2S2
, (43)

whereas expanding equation (42) we obtain the same ex-
pression without the last term. In the antiferromagnetic
case one obtains similar expressions with coefficients 6 and
3 instead of 2 and 2 in the denominator.

In Figure 3 we compare the heat capacity C = dU/dT
of a Heisenberg antiferromagnetic chain with S = 3/2 cal-
culated to different orders of the cumulant expansion (see
Eq. (41)) and following from the linear spin-wave theory
(see Eq. (42)) with the numerical result of reference [10]
where the transfer-matrix renormalization group (TMRG)
was used. Although a spin value of 3/2 is not large, one
notices that taking into account quantum corrections im-
proves the behavior of the heat capacity provided the tem-
perature is not too low. In order to achieve quantitative
agreement with the numerically accurate result, one must
take into account higher-order corrections in 1/S. This
requires the calculation of the next terms of the effective
classical Hamiltonian, which can be done with the help of
the diagram technique developed in Section 3. Also on the
low-temperature side the accuracy of the SWT result can

be improved by taking into account in equation (42), the
1/S corrections to the magnon spectrum.

7 Discussion

In the preceding part of the paper, we have obtained an
effective classical Hamiltonian H for the large-spin quan-
tum magnet described by the Heisenberg Hamiltonian Ĥ,
equation (11). H consists of a purely classical part and
quantum corrections of different orders in 1/S. Quantum
corrections have a non-Heisenberg form and their struc-
ture becomes more complicated with increasing order of
1/S. In particular, pair interactions in Ĥ give rise to
many-spin interactions in H.

Our effective classical Hamilton function H looks dif-
ferent from the effective classical Hamilton function ob-
tained in reference [8]. The latter has the same Heisenberg
form, and the quantum effects are absorbed in the factor
renormalizing the exchange interaction. This factor satis-
fies a system of nonlinear equations. It is difficult to make
a direct comparison of the two effective classical Hamilton
functions because of their different structures and different
ways of derivation: Our approach is perturbative in 1/S
and it leads to the same results for the physical quantities
as the Wigner-Kirkwood expansion, whereas the approach
of reference [8] is nonperturbative.

The effective classical Hamilton functionH obtained in
this paper can be used to compute quantum corrections
for magnetic systems with large spins and not too low
temperatures. For one-dimensional models, this was done
with the help of analytical methods. In two and higher
dimensions, one can apply the diagram technique for clas-
sical spins (see, e.g., Ref. [11]), which, however, should be
generalized to non-Heisenberg Hamiltonians. For models
without long-range order, such as two-dimensional ferro-
and antiferromagnets, it is problematic to sum up the rel-
evant diagrams for the corresponding classical case when
the temperature is low. Then the 1/D expansion, where D
is the number of spin components, proves to be an efficient
tool for low-dimensional classical magnets [12–14]. Since
H is written in terms of various scalar products, it can
be easily generalized to arbitrary values of D and treated
with the help of a 1/D expansion.

Appendix: Elimination of transverse
components of the coherent-state vectors

There are two generic formulas for the elimination of
transverse components of the coherent-state vectors. The
first one,∑

α=x,y

(a · nα)(nα · b) = (a · b)− (a · n)(n · b), (A.1)
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where a and b are arbitrary vectors, follows from the def-
inition of the scalar product (a ·b). The second formula is

(a · nx)(ny · b)− (a · ny)(nx · b) = ([nx × ny] · [a× b])

= (n · [a× b]). (A.2)

Combining these two formulas one obtains the relation

4(a · n±)(n∓ · b) = (a · b)− (a · n)(n · b)

± i(n · [a× b]), (A.3)

which is used in the main text to eliminate n±. Other
useful relations are

(n+ · n−) =
1
4

(n2
x + n2

y) =
1
2

[n+ × n−] =
i
2
n, [n± × n] = ∓in±. (A.4)
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